Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake.
نویسندگان
چکیده
Mitochondrial calcium uptake is a critical event in various cellular activities. Two recently identified proteins, the mitochondrial Ca(2+) uniporter (MCU), which is the pore-forming subunit of a Ca(2+) channel, and mitochondrial calcium uptake 1 (MICU1), which is the regulator of MCU, are essential in this event. However, the molecular mechanism by which MICU1 regulates MCU remains elusive. In this study, we report the crystal structures of Ca(2+)-free and Ca(2+)-bound human MICU1. Our studies reveal that Ca(2+)-free MICU1 forms a hexamer that binds and inhibits MCU. Upon Ca(2+) binding, MICU1 undergoes large conformational changes, resulting in the formation of multiple oligomers to activate MCU. Furthermore, we demonstrate that the affinity of MICU1 for Ca(2+) is approximately 15-20 μM. Collectively, our results provide valuable details to decipher the molecular mechanism of MICU1 regulation of mitochondrial calcium uptake.
منابع مشابه
MICU1 regulation of mitochondrial Ca2+ uptake dictates survival and tissue regeneration
Mitochondrial Ca(2+) uptake through the recently discovered Mitochondrial Calcium Uniporter (MCU) is controlled by its gatekeeper Mitochondrial Calcium Uptake 1 (MICU1). However, the physiological and pathological role of MICU1 remains unclear. Here we show that MICU1 is vital for adaptation to postnatal life and for tissue repair after injury. MICU1 knockout is perinatally lethal in mice witho...
متن کاملRearrangement of MICU1 multimers for activation of MCU is solely controlled by cytosolic Ca2+
Mitochondrial Ca(2+) uptake is a vital process that controls distinct cell and organelle functions. Mitochondrial calcium uptake 1 (MICU1) was identified as key regulator of the mitochondrial Ca(2+) uniporter (MCU) that together with the essential MCU regulator (EMRE) forms the mitochondrial Ca(2+) channel. However, mechanisms by which MICU1 controls MCU/EMRE activity to tune mitochondrial Ca(2...
متن کاملPRMT1-mediated methylation of MICU1 determines the UCP2/3 dependency of mitochondrial Ca2+ uptake in immortalized cells
Recent studies revealed that mitochondrial Ca(2+) channels, which control energy flow, cell signalling and death, are macromolecular complexes that basically consist of the pore-forming mitochondrial Ca(2+) uniporter (MCU) protein, the essential MCU regulator (EMRE), and the mitochondrial Ca(2+) uptake 1 (MICU1). MICU1 is a regulatory subunit that shields mitochondria from Ca(2+) overload. Befo...
متن کاملExpression of MICU1 after experimental focal cerebral ischemia in adult rats
Background: Mitochondrial Ca uptake is a pivotal pathophysiological process for neuronal survival when subjected to ischemic insult. Mitochondrial calcium uptake 1 (MICU1) has been demonstrated as a key regulator of the mitochondrial calcium uniporter (MCU), identified as a tetrameric highly specific channel that modulates mitochondrial Ca+ uptake. Methods: Adult male Sprague–Dawley (SD) rats u...
متن کاملTissue-Specific Mitochondrial Decoding of Cytoplasmic Ca2+ Signals Is Controlled by the Stoichiometry of MICU1/2 and MCU
Mitochondrial Ca2+ uptake through the Ca2+ uniporter supports cell functions, including oxidative metabolism, while meeting tissue-specific calcium signaling patterns and energy needs. The molecular mechanisms underlying tissue-specific control of the uniporter are unknown. Here, we investigated a possible role for tissue-specific stoichiometry between the Ca2+-sensing regulators (MICUs) and po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 33 6 شماره
صفحات -
تاریخ انتشار 2014